
Eur. Phys. J. B 39, 49–54 (2004)
DOI: 10.1140/epjb/e2004-00169-x THE EUROPEAN

PHYSICAL JOURNAL B

Non-Heisenberg two-dimensional ferromagnet in an external
magnetic field

Yu.A. Fridmana, O.V. Kozhemyako, and B.L. Eingorn

V.I. Vernadski Tavrida National University, Vernadski pr. 4, Simferopol 95007, Ukraine

Received 7 June 2003 / Received in final form 24 November 2003
Published online 18 June 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. The phase states of a non-Heisenberg two-dimensional ferromagnet are studied, in which the
long-range magnetic order is stabilized by the magnetoelastic interaction. It is shown that in this system,
together with the phases of nonzero magnetic order, there exists a quadrupolar phase characterized by a
tensor order parameter at zero external field. The transition temperature from the quadrupolar phase to
the paramagnetic phase is determined.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.30.Kz Magnetic phase boundaries
(including magnetic transitions, metamagnetism, etc.)

Introduction

For decades the Heisenberg model has been the basic
model on which the theory of magnetism has developed.
However, it is also possible to exceed the limits of the bilin-
ear exchange interaction, while not breaking the isotropy
of the system. Among the most interesting systems of this
class are magnets, in which the exchange Hamiltonian for
the higher orders in spin is of the same order of mag-
nitude as the bilinear Heisenberg exchange. It is obvious
that more complex models should also be characterized by
unusual properties [1–5]. In magnets with a regular crystal
lattice magnetic structures were found that are essentially
impossible within the Heisenberg model [1,2]. Among
them, for example, is the inclined two-sublattice structure
(this inclination appears to be huge in comparison with
relativistic effects, for example, in the antiferromagnets
or in crystals with other symmetry). Another interesting
property of such magnets is their magnetic polymorphism.
The greatest number of phases (fourteen) was observed in
CeBi [1,2]. Although such systems have long been under
investigation [1,2,6–8], the interest in them has not de-
creased. Such studies are important in connection with
the synthesis, and the experimental investigation of com-
pounds where the temperature of the magnetic ordering
is very low. In such situations, if the spin of a magnetic
ion is S ≥ 1, the Heisenberg exchange interaction is the
same order of magnitude, or less than the interaction,
which is described by the invariants of higher order [1].
The rare earth pniktids, the cubic intermetallids TmCd,
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TmZn and also EuO, EuS, EuSe are examples of such
systems [1,9–11].

In this context, it is interesting to investigate the
spectra of elementary excitations under varying magnetic
fields. It is very important because certain singlet mag-
nets exist in the non-magnetic state when the magnetic
field H = 0, but when the magnetic field H is very large,
they are in the magnetic state [1,2,11–14].

Investigations of this kind have been carried out for
3D magnets [1–5,12–17]. It is of interest to study the dy-
namical properties and phase states of 2D non-Heisenberg
magnets. For example, a numerical modeling for EuTe
films [18] has been carried out. It should be noted that
in such a system the Heisenberg coupling constant ex-
ceeds the constant of the biquadratic exchange. However,
there is a large number of 2D non-Heisenberg magnets
(CrO2, Mn2O3, CrCl3 [19]) in which the constant of the bi-
quadratic exchange is comparable or greater than the con-
stant of the Heisenberg exchange. The aim of the present
paper is to study a 2D non-Heisenberg ferromagnet with a
large biquadratic exchange interaction constant (exceed-
ing the Heisenberg interaction constant), and spin 1 in an
external magnetic field.

Model

Consider a 2D ferromagnet with the biquadratic exchange
interaction and a magnetoelastic (ME) interaction in an
external magnetic field. The magnetic field H is per-
pendicular to the plane (XOY ), and directed along the
axis OZ.
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The Hamiltonian of the system can be written in the
form:

H = −1
2

∑
n,n′

[
J (n − n′) �Sn

�Sn′ + K (n − n′)
(

�Sn
�Sn′

)2
]

− H
∑

n

Sz
n + ν

∑
n,i,j

Si
n Sj

n uij

+
∫

dr

{
λ + η

2
(
u2

xx + u2
yy + u2

zz

)
+ η

(
u2

xy + u2
xz + u2

yz

)
+ λ (uxxuyy + uxxuzz + uzzuyy)

}
(1)

where Si
n is the spin operator at site n; K (n − n′) >

J (n − n′) > 0 are the biquadratic and the Heisenberg
interaction constants; respectively, ν is the ME cou-
pling constant; λ, η are the elastic modules; uij =
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
is the symmetric part of the components

of the elastic strain tensor. From now on we assume that
the magnetic ion has spin S = 1, since such systems have
pronounced quantum properties [1,2].

The magnetoelastic interaction is taken into account
because, first, taking it into account makes the model more
realistic, and second, it leads to the stabilization of long
range magnetic order [22,23]. The long range magnetic
order exists in the system when a magnetic field differs
from zero H �= 0. However, when there is no magnetic
field, the long range magnetic order vanishes in accordance
with the Mermin-Wagner theorem [20]. Mathematically it
is manifested as the divergence of the fluctuation integral
at k → 0.

As was shown in [21–23], the presence of the magne-
todipolar, or the ME interaction, leads to either a modifi-
cation of the spectra of elementary excitations, or to the
root dependence of the spectrum on the wave vector in
the presence of the magnetodipolar interaction, or to the
presence of the magnetoelastic gap in the spectrum. Also
it leads to a convergence of the fluctuation integral and
thus to the existence of the long-range order.

Separating the exchange part of the Hamiltonian (1)
with the mean field value 〈S〉, which is connected with the
ordering of the magnetic moment and the complementary
fields (which are connected with the quadrupolar (QU)
ordering), we obtain the following one-ion Hamiltonian:

H0(n) = −H̃Sz
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2Q2
2n

+
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where
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(
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〈Sz〉 ,
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J0 =
∑
n′

J(n − n′), K0 =
∑
n′

K(n − n′),

Q0
2n = 3 (Sz

n)2 − S (S + 1) ,

Q2
2n =

1
2

[(
S+

n

)2 +
(
S−

n

)2
]
, Qxy

2n = Sx
nSy

n + Sy
nSx

n, . . .

We have taken into account the fact that due to the
symmetry of the problem:

qxy
2 = qxz

2 = qzy
2 = 0.

As follows from (2), the presence of the QU field re-
sults in the appearance an effective anisotropy with the
constants B0

2 and B2
2 .

Solving the Schrödinger equation with the
Hamiltonian (2), we obtain the following energy levels of
the magnetic ion:

E1 = −3B0
2 +

ν

2
(uxx + uyy + 2uzz) − χ

2
,

E0 = ν (uxx + uyy) ,

E−1 = −3B0
2 +

ν

2
(uxx + uyy + 2uzz) +

χ

2
, (3)

where χ2 = 4H̃2 + 4ν2u2
xy + [2B2

2 − ν(uxx + uyy)]2, and
the eigenfunctions of the Hamiltonian (2):

Ψ (1) = cos θ |1〉 + sin θ |−1〉 ,

Ψ (0) = |0〉 , Ψ (−1) = − sin θ |1〉 + cos θ |−1〉 . (4)

Here
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√√√√√
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2
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2
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2)2

.
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The spontaneous strains uij in (3) are determined from
the free energy density minimum and have the form:

u(0)
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2η (η + 3λ)

×
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2
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u(0)
xy = u(0)
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χ0 =
√

H̃2 + (B2
2)2. (5)

In the basis of the eigenfunctions of the one-
ion Hamiltonian, we construct the Hubbard operators
XM ′M

n ≡ |Ψn(M ′)〉〈Ψn(M)| [24–27], which describe the
transitions of the magnetic ion from the state M ′ to the
state M . In this case they are related to the spin operators
through:
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√
2
(
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(
X01
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n

)
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(
X0−1
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n

))
;
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√
2
(
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(
X10
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n

)
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(
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;

Sz
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(
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n
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(
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n

)
.
(6)

Using this connection, we determine the order param-
eters of the system:

〈Sz〉 = cos 2θ
e−E1/T − e−E−1/T

e−E1/T + e−E0/T + e−E−1/T
,

q0
2 = 3

e−E1/T + e−E−1/T

e−E1/T + e−E0/T + e−E−1/T
− 2,

q2
2 = sin 2θ

e−E1/T − e−E−1/T

e−E1/T + e−E0/T + e−E−1/T
. (7)

In the case of low temperatures (at H �= 0), the order
parameters have the following form:

〈Sz〉 = cos 2θ, q0
2 = 1, q2

2 = sin 2θ, (8)

where we have taken into account that the lowest energy
level is E1 (at H �= 0).

Thus, if the magnetic field is greater than some “criti-
cal” value, the ferromagnetic (FM) phase is implemented
in our system; in this case 〈Sz〉 = 1, q0

2 = 1, q2
2 = 0.

The “critical” field is determined from the spectra of
quasiparticles.

The phase diagram of a non-Heisenberg
ferromagnet in an external magnetic field

The spectra of quasiparticles is determined by the poles
of Green’s function [28]:

Gαα′
(n, n′; τ, τ)′ = −

〈
T̂ X̃α

n (τ) X̃α′
n′ (τ ′)

〉
where T̂ is the Wick operator, X̃α

n (τ) is the Hubbard
operator in the Heisenberg representation, and the av-
eraging is carried out with the total Hamiltonian H =
Hint +Htr +H0, where Hint is the exchange Hamiltonian,
H0 is the one-ion Hamiltonian, and Htr is the Hamiltonian
of magnon-phonon transformation [5] which has the fol-
lowing explicit form:

Htr =
1√
N

∑
n,α,q,λ

(
bq,λ + b+

−q,λ

)
T α

n (q, λ)Xα
n .

Here, T α
n (q, λ) are the amplitudes of magnon-phonon

transformations, the square of which determine the prob-
ability of the corresponding transition, while b+

−q,λ, bq,λ

are the creation and annihilation operators of λ-polarized
magnons, respectively. Since the magnetoelastic coupling
leads to the hybridization of magnetic and elastic excita-
tions, there exist quasimagnon and quasiphonon excita-
tion rather than just magnons and phonons in the sys-
tem [3,31].

Details of the procedure for obtaining the dispersion
equation to describe the spectra of coupled ME waves are
given in [5]. Since this equation has a rather cumbersome
form, we do not provide it here, and we restrict ourselves
to the analysis of its solutions for the case �k ‖OY. For such
geometry, the only nonzero components of a unit polar-
ization vector of a phonon are ey

l , ez
t , ex

τ . This equation
is valid for all values of material constants, therefore it
permits us to determine the spectra of coupled ME waves
in various phases. We now consider this equation in the
quadrupolar and ferromagnetic phases.

1 Ferromagnetic phase

Let us first consider the case where the magnetic field
is large while the temperature is relatively small. In this
case, the FM phase occurs in the system, and the spectra
of the “transverse” and “longitudinal” quasimagnons have
the following respective forms:

ε⊥ (k) =
J0

2
k2 + H + a0,

ε|| (k) =
K0

2
k2 + 2 [H − K0 + J0] .

The spectra of τ−polarized quasiphonons are deter-
mined by the following expression:

ω2 (k) = ω2
τ (k)

K0

2
k2 + 2

[
H − K0 + J0 − a0

2

]
K0

2
k2 + 2 [H − K0 + J0]

(9)
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where a0 = ν2

2η is the parameter of the ME coupling. We
assume that the lattice parameter equals unity.

The spectrum of t− and l−polarized sound waves re-
main linear in the wave vector. This demonstrates that
they do not interact with the magnetic subsystem.

Following the expression (9), at H = Hc = K0−J0+ a0
2

the spectrum of τ -polarized quasiphonons softens. In the
case of the long wavelength limit it is given by:

ω2 (k) = ω2
τ (k)

K0k
2

2a0
,

while the spectrum of “longitudinal” quasimagnons ex-
hibits a ME gap ε||(0) = a0. It should be noted that in
the FM phase 〈(Sz)2〉 = 1, 〈(Sx)2〉 = 〈(Sy)2〉 = 1/2.

Thus, Hc is the field of the phase transition from the
FM phase (with the order parameters determined in (8))
to the quadrupolar-ferromagnetic (QFM) (or the angular)
phase. In this phase, the order parameters are functions
of the field, and:

〈Sz〉 = cos 2θ < 1, q2
2 ≈ sin 2θ �= 0, q0

2 < 1.

This phase exists for 0 < H < Hc.

2 Quadrupolar phase

It is interesting to study the case where H = 0. In this
case, as follows from (3), E0 is the lowest energy level and
the order parameters determined by (7) (at H = 0) can
be presented in the following form:

〈Sz〉 = 0, q2
2 = 0, q0

2 = −2. (10)

These order parameters (10) are determined in the
QU phase [1–3,6–8,15,16]. It is necessary to take into
consideration that cos 2θ = 0 in the QU phase, and
that sin 2θ = 1(sin θ = cos θ = 1√

2
), however q2

2 = 0 and
〈(Sz)2〉 = 0 because of the inversion of the energy levels.
Besides, in this phase: 〈(Sx)2〉 = 〈(Sy)2〉 = 1.

Let us investigate the spectra of elementary excitations
in the QU phase. We use the method of bosonization of
the Hubbard operators [29,30]. We associate the opera-
tors Xα

n with pseudo-Hubbard operators X̃α
n , operating

in the Hilbert space and connected with Bose creation
and annihilation operators of the quasiparticles (magnons)
through:

X̃01
n = (1 − a+

n an − b+
n bn)an,

X̃10
n = a+

n ,

X̃−11
n = b+

n an,

H̃1
n = a+

n an,

H̃0
n = 1 − a+

n an − b+
n bn

X̃0−1
n = (1 − a+

n an − b+
n bn)bn,

X̃−10
n = b+

n ,

X̃1−1
n = a+

n bn,

H̃−1
n = b+

n bn. (11)

Using (11), the Hamiltonian of our system (in the QU
phase) can be recast through Bose-operators:

H =
∑

k

a+
k ak [E10 − J (k)]

+
1
2

∑
k

(
a+

k a+
−k + aka−k

)
[K (k) − J (k)]

+
∑

k

b+
k bk [E−10 − J (k)]

+
1
2

∑
k

(
b+
k b+

−k + bkb−k

)
[K (k) − J (k)] (12)

where a+ (a) are the Bose creation (annihilation) oper-
ators of low-frequency magnons, b+ (b) are the Bose cre-
ation (annihilation) operators of high-frequency magnons,
and Eij = Ei − Ej , where Ei is the energy level of the
magnetic ion (i = 1, 0, −1).

Using Bogolyubov’s u-ν transformation [31], it is
straightforward to diagonalize the Hamiltonian (12):

H =
∑

k

εα (k)α+
k αk +

∑
k

εβ (k)β+
k βk, (13)

where ε2
α (k) = [E10 − J (k)]2 − [K (k) − J (k)]2 , ε2

β (k) =
[E−10 − J (k)]2 − [K (k) − J (k)]2 .

It is necessary to note that given equation (5) in the
QU phase, the spontaneous deformations have the form
uxx = uyy ≈ − ν

η , which is why there is the degeneracy of
energy levels (E1 = E−1) in the QU phase, leading to the
equality εα = εβ .

Taking equation (3) into consideration, the spectrum
of magnons can be presented in the following form:

ε2 (k) =
[
a0 +

K0

2
k2

]
[a0 + 2K0 − 2J0] . (14)

Since we are searching for the existence of the long-
range magnetic order in the system, we consider the be-
havior of the order parameter q0

2 which can be presented
in the following form:

q0
2 =

3
N

∑
n

〈
(Sz

n)2
〉
− 2 =

1
N

∑
n

〈
1 − 3a+

n an

〉
. (15)

In obtaining equation (15), we use the fact that in the
QU phase, 〈a+

n an〉 = 〈b+
n bn〉 , and the magnetic ion has

spin S = 1.
Equation (15) then yields:

q0
2 = 1− 3

(2π)2

∞∫
0

(
u2

k + ν2
k

) kdk

exp
(

ε (k)
T

)
− 1

+q (0) , (16)

where uk and νk are the above determined Bogolyubov
parameters, u2

k + ν2
k = E10−J(k)

ε(k) , and q(0) =

1
(2π)2

∞∫
0

ν2
k

kdk

exp( ε(k)
T )−1

are the zero oscillations.
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Fig. 1. The phase diagram of a non-Heisenberg 2D ferromag-
net with large biquadratic exchange. FM – the ferromagnetic
phase; QFM – the quadrupolar-ferromagnetic phase; QU – the
quadrupolar phase; PM – paramagnetic phase; HC – the
critical field separating the FM phase and the QFM phase;
TQ – the critical temperature separating the QU phase and
the PM phase.

Usually, the value of q (0) is small (at ∼ T → 0, q (0) ∼
0.1), therefore it is neglected in the calculations.

As follows from (16), the integral converges in its
lower limit due to the energy gap in the magnon spec-
trum (14). We can estimate the temperature TQ of
the QU-paramagnetic phase transition from the condi-
tion q0

2 = 0.

TQ ≈ 2πK0

3 ln

{
πK0

3
√

a0 (K0 − J0 + a0)

} . (17)

According to (17), in the absence of the ME interac-
tion (a0 = 0), TQ = 0. This result is in good agreement
with the Mermin-Wagner theorem, and can be explained
as follows. As is obvious from the Hamiltonian (1), the
parts, which describe the ME coupling through the spin
structure are similar to the operators of one-ion uniaxial
anisotropy. Besides, the nature of the one-ion anisotropy
and the ME interaction are the same – i.e. the spin-orbit
interaction (see for example [31]). Thus, the ME interac-
tion in effect leads to the effective anisotropy which in
turn leads to spontaneous symmetry breaking, and, as a
consequence, to stabilization of the long-range magnetic
order.

It is also necessary to note that the structure of equa-
tion (17) corresponds to the results of [32] (see Eq. (34)), in
which the stabilization of the long-range magnetic order in
a 2D anisotropic Heisenberg ferromagnet was investigated.

Schematically, the phase diagram of a 2D non-
Heisenberg ferromagnet in an external magnetic field of
the system in study is given in Figure 1. This phase dia-
gram is plotted schematically since we have only studied
the vicinity of the points (T = 0, Hc) and (TQ, H = 0). We
have approximated the rest of the phase diagram (plotted
as a dashed line in Fig. 1). Actually, this phase diagram

has a more complicated structure since there ought to ex-
ist other phase transitions lines, e.g. the line dividing the
FM and the paramagnetic phase, which is implemented
at T > TQ and H = 0. Therefore, this phase diagram
is a rather schematic one. Nevertheless, it shows the ten-
dency of implementing the quadrupolar phase. A more
detailed study of this diagram requires further investiga-
tions, which can be the subject of future researches.

Preceding investigations [29] have shown that long-
range magnetic order is absent in a 2D isotropic non-
Heisenberg ferromagnet. However, as we have shown in
this work, taking account even weak interactions (for ex-
ample the ME coupling) leads to stabilization of not only
the ferromagnetic, but also the quadrupolar order. As
it was pointed out in the “Introduction”, the stabiliza-
tion of long-range magnetic ordering is caused by the
presence of a ME gap in the spectrum of quasimagnons.
This gap is determined by spontaneous deformations (see
Eq. (5)) and is static in origin. The presence of the gap
in the spectrum of quasimagnons results in convergence
of the fluctuation integrals on the lower limit, and, there-
fore, to the appearance of long-range magnetic order. It
is necessary to note that in a 2D ferromagnet the tem-
perature of phase transition from QU to paramagnetic is
mainly determined by the parameters of the biquadratic
exchange and the ME interaction. In the paramagnetic
phase the order parameters are zero, and consequently:
〈(Sz)2〉 = 〈(Sx)2〉 = 〈(Sy)2〉 = 2

3 .
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